1,3-Dipolar Cycloaddition—Decarboxylation Reactions of an Azomethine Ylide with Isatoic Anhydrides: Formation of Novel Benzodiazepinones

Asha M. D'Souza,[†] Nadia Spiccia,[†] Jose Basutto,[†] Pawel Jokisz,[†] Leon S.-M. Wong,[†] Adam G. Meyer,[†] Andrew B. Holmes,[‡] Jonathan M. White,[‡] and John H. Ryan^{*,†}

CSIRO, Division of Materials Science and Engineering, Bag 10, Clayton South, Victoria 3169, Australia and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia

jack.ryan@csiro.au

Received November 22, 2010

ABSTRACT

R¹ = H, Me, Et, allyl, Bn, Ph; R² = H R¹ = Me; R² = 6-Cl, 6-Br, 6-Me, 6-OMe, 6,7-di-F, 7-F, 7-CO₂Me, 8-OMe

A nonstabilized azomethine ylide reacts with a wide range of substituted isatoic anhydrides to afford novel 1,3-benzodiazepin-5-one derivatives, which are generally isolated in high yield. The transformations involve 1,3-dipolar cycloaddition reactions of the ylide with the anhydrides to give transient, and in a representative case spectroscopically observable, oxazolidine intermediates that undergo ring-opening-decarboxylation-ring-closing reaction cascades to yield the 1,3-benzodiazepin-5-one products.

The 1,3-dipolar cycloaddition reaction¹ of azomethine ylides with dipolarophiles is an efficient and versatile method for the construction of five-membered heterocycles.² The majority of research into azomethine ylide cycloaddition chemistry has focused on the use of alkenes as dipolarophiles for the synthesis of pyrrolidine-containing molecules of biological³ or materials science interest.⁴ A range of hetero multiple bonded systems, including carbonyl, thiocarbonyl, isothiocyanato, imino, isocyanato, nitrile, nitroso, and azo derivatives, also act as azomethine ylide dipolarophiles.⁵ In the case of carbonyl dipolarophiles, aldehydes and ketones readily undergo cycloaddition reactions with azomethine ylides,⁶ whereas carboxyl moieties (e.g., carboxylic acids and esters) are generally unreactive in such reactions.^{6d} The relative lack of reactivity of the carbonyl group of carboxyl

[†] CSIRO.

[‡] University of Melbourne.

⁽¹⁾ Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565.

^{(2) (}a) Eberbach, W. Sci. Synth. 2004, 27, 441. (b) Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105. (c) Harwood, L. M.; Vickers, R. J. Chemistry of Heterocyclic Compounds; Padwa, A., Pearson, W. H., Eds.; Wiley: New York, NY, 2003; Vol. 59, Chapter 3, p 169. (d) Tsuge, O.; Kanemasa, S. Adv. Het. Chem. 1989, 45, 231. (e) Lown, J. W. 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, NY, 1984; Vol. 1, p 653.

^{(3) (}a) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 16, 2047. (b) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (c) Husinec, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 2047. (d) Najera, C.; Sansano, J. M. Angew. Chem., Int. Ed. 2005, 44, 6272. (e) Pearson, W. H.; Story, P. Synlett 2003, 903. (f) Koumbis, A.; Gallos, J. K. Curr. Org. Chem. 2003, 7, 771.

⁽⁴⁾ Tagmatarchis, N.; Prato, M. Synlett 2003, 768.

^{(5) (}a) Lown, J. W.; Dallas, G.; Maloney, T. W. Can. J. Chem. 1969,
47, 3557. (b) Lown, J. W.; Moser, J. P.; Westwood, R. Can. J. Chem. 1970,
48, 2227. (d) Huisgen, R.; Martin-Ramos, V.; Scheer, W. Tetrahedron Lett.
1971, 477. (e) Heine, H. W.; Henzel, R. P. J. Org. Chem. 1969, 34, 171.

compounds compared with that of aldehydes can be explained by frontier molecular orbital theory.^{7,8}

Isatoic anhydride **1a** was identified as a potential new carbonyl dipolarophile. Isatoic anhydride derivatives are readily available,⁹ versatile synthetic intermediates undergoing reactions with a broad range of nucleophiles to afford 2-aminobenzoyl derivatives.¹⁰ Thus, it was thought that the C4-carbonyl moiety within isatoic anhydride **1a** may be sufficiently activated that it would undergo cycloaddition with an azomethine ylide **2** to afford the spiro-fused oxazolidine **3** (Scheme 1).

In order to test this hypothesis, isatoic anhydride **1a** was allowed to react with azomethine ylide **2a** (R = Bn), formed from *N*-(methoxymethyl)-*N*-(trimethylsilyl-methyl)-benzyl-amine **4**¹¹ and 0.05 mol equiv of trifluoroacetic acid (TFA)¹² in the presence of 4 Å molecular sieves. To our surprise, the benzodiazepinone **5a**, rather than the anticipated spirofused cycloadduct **3** (R = Bn), was isolated as a single major product in moderate yield (Table 1, entry 1). The analytical

 Table 1. Transformation of Isatoic Anhydride and

N-Functionalized Isatoic Anhydrides into 1,3-Benzodiazepin-5-ones

N N R 1a-f		OMe + N-Bn TMS -C 4		$ \xrightarrow{A \text{ or } LiF} \qquad \qquad$		
entry	1	R	cond^a	time (h)	yield $(\%)^b$	
1	a	Н	А	24	42	
2	b	Me	Α	36	92	
3	с	\mathbf{Et}	А	16	79	
4	d	Allyl	Α	16	71	
5	е	Bn	А	40	77	
6	f	Ph	А	16	80	
7	a	Η	В	3	0	
8	b	Me	В	6	88	
9	с	\mathbf{Et}	В	2	96	
10	d	Allyl	В	4	76	
11	е	Bn	В	3	100	
12	f	Ph	В	12	90	

^{*a*} Reaction conditions, A: **4** (1.8 equiv), 4 Å molecular sieves, TFA (0.05 equiv), CH₂Cl₂, 0 °C to rt; B: **4** (1.8 equiv), 4 Å molecular sieves, LiF (1.25 equiv), CH₃CN, sonication, 35 °C. ^{*b*} Yield of product isolated after chromatography and/or crystallization.

Org. Lett., Vol. 13, No. 3, 2011

and spectroscopic data for the product were in full accord with a novel 1,3-benzodiazepin-5-one ring system, and the structural assignment was confirmed by single crystal X-ray crystallographic analysis (Figure 1).¹³

Figure 1. Single crystal X-ray structure of benzodiazepinone 5a.

The scope of this novel reaction was explored by subjecting *N*-substituted isatoic anhydride derivatives to the cycloaddition reaction conditions. The derivatives 1b-f, substituted on nitrogen with alkyl, allyl, benzyl, and phenyl groups, were readily prepared from isatoic anhydride 1a.^{14,15} Reaction of the isatoic anhydrides 1b-f with the azomethine ylide 2a resulted in the corresponding *N*-substituted 1,3benzodiazepin-5-ones 5b-f respectively, which were isolated in 71–92% yield (Table 1, entries 2–6). The higher yields obtained for the *N*-substituted derivatives 5b-f, versus the parent system 5a, was attributed to a combination of cleaner reactions, as evidenced by NMR analyses of the crude reaction products, and the greater stability of the *N*substituted products toward chromatographic purification.

(6) (a) Lown, J. W.; Smalley, R. K.; Dallas, G.; Maloney, T. W. *Can. J. Chem.* **1970**, *48*, 89. (b) Dallas, G.; Lown, J. W.; Moser, J. P. *Chem. Commun.* **1970**, 278. For recent examples, see: (c) Khistiaev, K. A.; Novikov, M. S.; Khlebnikov, A. F.; Magull, J. *Tetrahedron Lett.* **2008**, *49*, 1237. (d) Ryan, J. H.; Spiccia, N.; Wong, L. S.-M.; Holmes, A. B. Aust. J. Chem. **2007**, *60*, 898.

(7) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646.

(8) (a) Padwa, A.; Dent, W. J. Org. Chem. 1987, 52, 235. (b) Houk,
K. N.; Sims, J.; Watts, C. R.; Luskus, L. J. J. Am. Chem. Soc. 1973, 95, 7301. (c) Sustmann, R. Tetrahedron Lett. 1971, 12, 2717. (d) Sustmann,
R. Pure Appl. Chem. 1974, 40, 569.

(9) (a) Wagner, E. C.; Fegley, M. F. Org. Synth. **1947**, 27, 45. (b) Wennerberg, J.; Bjork, A.; Fristedt, T.; Granquist, B.; Jansson, K.; Thuvesson, I. Org. Process Res. Dev. **2007**, 11, 674.

(10) (a) Brouillette, Y.; Martinez, J.; Lisowski, V. Eur. J. Org. Chem.
2009, 3487. (b) Shvekhgeimer, M.-G. A. Chem. Heterocycl. Compd. 2001, 37, 385. (c) Kappe, T.; Stadlbauer, W. Adv. Heterocycl. Chem. 1981, 28, 127. (d) Coppola, G. M. Synthesis 1980, 505.

(11) Hosomi, A.; Sakata, Y.; Sakurai, H. Chem. Lett. 1984, 1117.

(12) (a) Terao, Y.; Kotaki, H.; Imai, N.; Achiwa, K. *Chem. Pharm. Bull.* **1985**, *33*, 896. (b) Terao, Y.; Kotaki, H.; Imai, N.; Achiwa, K. *Chem. Pharm. Bull. 1985*, *33*, 2762.

(13) Crystallographic data (CIF) for the structure reported in this manuscript have been deposited with the Cambridge Crystallographic Data Centre (CCDC) and allocated the deposition number CCDC-796928 for compound **5a**. A copy of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge, CB2 IEZ, UK; fax: (44) 01223 336 033; email: deposit@ccdc.cam.ac.uk.

(14) Hardtmann, G. E.; Koletar, G.; Pistar, O. R. J. Heterocycl. Chem. 1975, 12, 565.

(15) Chan, D. M. T. Tetrahedron Lett. 1996, 37, 9013.

Alternative conditions (amine reagent 4 and LiF with sonication at 35 °C) have been developed by Padwa¹⁶ for the generation of the azomethine ylide 2a. When the parent system 1a was reacted under these conditions, a complex product mixture resulted, with no evidence of starting material 1a or 1,3-benzodiazepin-5-one 5a (Table 1, entry 7). In contrast, under these conditions, the *N*-substituted isatoic anhydrides 1b-f resulted in high yields of the 1,3-benzodiazepin-5-ones 5b-f (Table 1, entries 8–12). The lack of isolation of 5a from the reaction promoted by LiF was attributed to a higher level of side reactions and/or the sensitivity of 5a toward degradation under these conditions.

In order to study the effect of varying isatoic anhydride aromatic substituents on the outcome of this process, a series of *N*-methyl benzo-substituted isatoic anhydrides 1g-q was prepared¹⁴ and subjected to the LiF-promoted reaction conditions. For isatoic anhydrides substituted with electronwithdrawing groups, such as fluoro, chloro, bromo, and methoxycarbonyl groups, the reaction proceeded to completion and high yields of the 1,3-benzodiazepin-5-one products were obtained (Table 2, entries 3, 4, 7, 8, and 10). For isatoic

 Table 2. Transformation of Benzo-Substituted N-Methyl Isatoic

 Anhydrides into 1,3-Benzodiazepin-5-ones^a

R ³ 6 R ² 8 F	2 ⁴ C 5 N 2 ¹ N 1b,g-q		OMe + N-Bn TMS 4	L 	iF ▶	R^{3} R^{2} R^{1} F^{1} F^{2}	N-Bn N-Bn We g-q
entry	1	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	time (h)	yield $(\%)^b$
1	b	Н	Н	Н	Н	6	88
2	g	OMe	Η	Η	Η	3	80
3	h	Η	F	Η	Η	24	66
4	i	Η	$\rm CO_2Me$	Η	Η	1.5	94
5	j	Η	OMe	Η	Η	48	0^c
6	k	Η	Η	Me	Η	24	66^d
7	1	Η	Η	Cl	Η	3	76
8	m	Η	Н	\mathbf{Br}	Η	2	63
9	n	Η	Н	OMe	Η	41	46^e
10	0	Η	F	\mathbf{F}	Η	6	93
11	р	Η	Η	Η	Me	24	0 ^f
12	q	Η	OMe	OMe	Η	56	0^g

^{*a*} Reaction conditions: **4** (1.8 equiv), 4 Å molecular sieves, LiF (1.25 equiv), CH₃CN, 35 °C, sonication. ^{*b*} Yield of product isolated after chromatography and/or crystallization. ^{*c*} 73% of starting material **1j** was recovered. ^{*d*} 13% of starting material **1k** was recovered. ^{*e*} 36% of starting material **1n** was recovered. ^{*f*} 79% of starting material **1p** was recovered. ^{*g*} 77% of starting material **1q** was recovered.

anhydrides substituted with electron-donating groups, reactions did proceed when the groups were *meta* to the carbonyl group [**1g** (8-methoxy), **1k** (6-methyl), and **1n** (6-methoxy); entries 2, 6, and 9] but were incomplete for the 6-substituted examples. The high yield of product obtained for the 8-methoxy example **1g** demonstrated that a substituent *ortho* to the isatoic anhydride nitrogen does not hinder the reaction. For isatoic anhydrides substituted with electron-donating groups *ortho* or *para* to the C4-carbonyl group, no reaction occurred with starting material being recovered in high yield [**1j** (7-methoxy), **1p** (5-methyl), and **1q** (6,7-dimethoxy); entries 5, 11, and 12]. The lack of reactivity in these cases indicates that *ortho* or *para* electron-donating groups can deactivate the carbonyl group toward reaction with the azomethine ylide.¹⁷ In the case of the 5-methyl derivative **1p**, the steric bulk of the methyl group may also hinder the reaction.

In an effort to observe a reaction intermediate analogous to **3**, the reaction of *N*-methyl isatoic anhydride **1b** with azomethine ylide **2a** was followed by ¹H NMR and IR spectroscopy. For the NMR study, a solution of **1b** and reagent **4** (in CD₂Cl₂ at 25 °C) was treated with TFA and spectra were recorded over a 24 h period. It was observed that signals due to **1b** were rapidly replaced by signals due to a transient oxazolidine intermediate **7**, with the conversion being complete after *ca*. 20 min (Scheme 2).^{18,19} Particularly

diagnostic features of the ¹H NMR spectrum of intermediate 7 were the geminally coupled doublets at δ 4.82 and 4.69 ppm assigned to the nonequivalent oxazolidine methylene protons H2'a and H2'b. At this time, signals due to the endproduct benzodiazepinone **5b** were not apparent. However, after this time, the signals due to the oxazolidine intermediate 7 were slowly replaced with those of **5b**, with the full conversion complete after 24 h.

Isatoic anhydride **1b** exhibits two strong carbonyl stretches at $\nu_{C=0}$ 1780 and 1730 cm⁻¹ assigned to the C4 and the C2 carbonyl groups, respectively. The IR spectrum of the reaction mixture containing the oxazolidine intermediate **7** showed a single new strong carbonyl stretch at $\nu_{C=0}$ 1725 cm⁻¹. After a 24 h period, the carbonyl stretch at 1725 cm⁻¹ gave way to a carbonyl stretch at $\nu_{C=0}$ 1654 cm⁻¹ due to the end product 1,3-benzodiazepin-5-one **5b**.

 ⁽¹⁶⁾ Padwa, A.; Dent, W. Org. Synth. 1989, 67, 133. Padwa, A.; Dent,
 W. Org. Synth. 1993, 231.

⁽¹⁷⁾ This result is in contrast to cycloaddition reactions of azomethine ylide 2a with benzaldehydes which appear to be unaffected by substitution with electron-donating groups (see ref 6d).

⁽¹⁸⁾ The ¹H NMR spectra of **7** were complicated due to side reactions of the azomethine ylide **2a** and/or precursor **4**. The signals due to **7** were identified by subtraction of the side product signals observed during a control experiment performed without isatoic anhydride **1b**. Selected data for **7**: $v_{C=0}$ (CDCl₃) 1725 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.47 - 7.17 (m, 7H), 7.16 (dd, J = 7.6, 6.8 Hz, 1H, H6), 6.99 (d, J = 8.2 Hz, 1H, H8), 4.82 (d, J = 5.6 Hz, 1H, H2'a), 4.69 (d, J = 5.6 Hz, 1H, H2'b), 4.07 - 3.99 (m, 2H, CH₂Ph), 3.53 (s, 2H, N4'), 3.38 (s, 3H, N1Me).

⁽¹⁹⁾ The instability of intermediate 7 has so far prevented its purification.

A plausible mechanism for the transformation of isatoic anhydride **1b** into 1,3-benzodiazepin-5-one **5b** is shown in Scheme 3. A rapid 1,3-dipolar cycloaddition reaction of the

Scheme 3. Plausible Mechanism for the Transformation of Isatoic Anhydrides into 1,3-Benzodiazepin-5-ones

azomethine ylide **2a** with the benzoyl-like carbonyl group of the isatoic anhydride **1b** results in the spectroscopically observed oxazolidine intermediate **7**. A cascade process then occurs, initiated by a relatively slow ring opening of oxazolidine **7** to give the iminium ion **8**.²⁰ The alkoxide **8** then ring opens to give ketone **9**, which then decarboxylates to provide amide ion **10**.^{21,22} A 7-*endo-trig* ring closure²³ of the amido-iminium species **10** then affords the isolated 1,3-benzodiazepin-5-one **5b**. This paper describes *the first report of cycloaddition chemistry of the activated carbonyl group within isatoic anhydride derivatives.* The framework of the 1,3-benzodiazepin-5-one products **5** is novel, and analogues are readily available. The framework of **5** bears a close relationship to that of benzoazepine and benzodiazepine drugs, e.g. Diazepam, that are known as privileged structures in pharmaceutical discovery.²⁴ Further studies will be aimed at expansion of the scope of the chemistry through exploring alternative dipoles or activated carboxyl groups and at application of the 1,3-benzodiazepin-5-one framework in bioactive discovery.

Acknowledgment. N.S., J.B., P.J., and A.M.D. thank the Commonwealth Scientific Industrial Research Organization (CSIRO) for student scholarships.

Supporting Information Available: Experimental procedures and compound characterization for compounds 10, 5a-i,k-o. ¹H NMR and IR spectra for intermediate 7. X-ray structural data for **5a** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL102824K

(22) Alternative mechanisms, involving electrocyclic extrusion of carbon dioxide from 7 or 8, have been considered; however, these mechanisms would require formation of high energy nonaromatic intermediates.
(23) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.

(24) (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPrado, R. M.;
Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.;
Kunkel, K. A.; Springer, J. P.; Hirschfield, J. J. Med. Chem. 1988, 31, 2235.
(b) L Lindell, S.; Pattenden, D. L.; Shannon, C. J. Bioorg. Med. Chem. 2009, 17, 4035. (c) Katritzky, A. R.; Nair, S. K.; Rodriguez-Garcia, V.;
Xu, Y.-J. J. Org. Chem. 2002, 67, 8327. (d) Smith, J. A.; Ryan, J. H. Prog. Met. Chem; Gribble, G. W., Joule, J. A., Eds.; Elsevier Science Ltd.: Oxford, OX5 1GB, U.K., 2009; Vol. 20, Chapter 7, p 432.

^{(20) (}a) Bergmann, E. D. *Chem. Rev.* **1953**, *53*, 309. (b) Bergmann, E. D.; Gil-Av, E.; Pinchas, S. *J. Am. Chem. Soc.* **1953**, *75*, 358. (c) Bulman Page, P. C.; Buckley, B. R.; Elsegood, M. R. J.; Hayman, C. M.; Heaney, H.; Rassias, G. A.; Talib, S. A.; Liddle, J. *Tetrahedron* **2007**, *63*, 10991.

⁽²¹⁾ A related ring-opening and decarboxylation of spiro-(benzooxazine)pyrrolidines has recently been reported: Nicolaou, K. C.; Krasovskiy, A.; Majunder, U.; Trepanier, V. E.; Chen, D. Y.-K. *J. Am. Chem. Soc.* **2009**, *131*, 3690.