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ABSTRACT

R'=H, Me, Et, allyl, Bn, Ph; R2=H
R! = Me; R? = 6-C|, 6-Br, 6-Me, 6-OMe, 6,7-di-F, 7-F, 7-CO,Me, 8-OMe

A nonstabilized azomethine ylide reacts with a wide range of substituted isatoic anhydrides to afford novel 1,3-benzodiazepin-5-one derivatives,
which are generally isolated in high yield. The transformations involve 1,3-dipolar cycloaddition reactions of the ylide with the anhydrides to
give transient, and in a representative case spectroscopically observable, oxazolidine intermediates that undergo ring-opening—decarboxylation—ring-

closing reaction cascades to yield the 1,3-benzodiazepin-5-one products.

The 1,3-dipolar cycloaddition reaction® of azomethine ylides
with dipolarophiles is an efficient and versatile method for
the construction of five-membered heterocycles.? The major-
ity of research into azomethine ylide cycloaddition chemistry
has focused on the use of alkenes as dipolarophiles for the
synthesis of pyrrolidine-containing molecules of biological®
or materials science interest.* A range of hetero multiple
bonded systems, including carbonyl, thiocarbonyl, isothio-
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cyanato, imino, isocyanato, nitrile, nitroso, and azo deriva-
tives, also act as azomethine ylide dipolarophiles.® In the
case of carbonyl dipolarophiles, adehydes and ketones
readily undergo cycloaddition reactions with azomethine
ylides,® whereas carboxyl moieties (e.g., carboxylic acids and
esters) are generally unreactive in such reactions.®® The
relative lack of reactivity of the carbonyl group of carboxyl
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compounds compared with that of aldehydes can be ex-
plained by frontier molecular orbital theory.”®

Isatoic anhydride 1a was identified as a potentia new
carbonyl dipolarophile. Isatoic anhydride derivatives are
readily available,® versatile synthetic intermediates undergo-
ing reactions with a broad range of nucleophiles to afford
2-aminobenzoy! derivatives.’® Thus, it was thought that the
C4-carbonyl moiety within isatoic anhydride 1a may be
sufficiently activated that it would undergo cycloaddition
with an azomethine ylide 2 to afford the spiro-fused
oxazolidine 3 (Scheme 1).

Scheme 1. Proposed Reaction of Isatoic Anhydride with an
Azomethine Ylide
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In order to test this hypothesis, isatoic anhydride 1a was
allowed to react with azomethine ylide 2a (R = Bn), formed
from N-(methoxymethyl)-N-(trimethylsilyl-methyl)-benzyl-
amine 4 and 0.05 mol equiv of trifluoroacetic acid (TFA)*?
in the presence of 4 A molecular sieves. To our surprise,
the benzodiazepinone 5a, rather than the anticipated spiro-
fused cycloadduct 3 (R = Bn), was isolated as a single major
product in moderate yield (Table 1, entry 1). The analytical

Table 1. Transformation of Isatoic Anhydride and
N-Functionalized Isatoic Anhydrides into 1,3-Benzodiazepin-5-ones

0 OMe Q
o cat. TFA or LiF

@fk /& + N-Bn @(‘\N -Bn

N0 ( [CO,] N

R ™S R

1a-f 4 5a-f
entry 1 R cond® time (h) yield (%)°

1 a H A 24 42
2 b Me A 36 92
3 c Et A 16 79
4 d  Alyl A 16 71
5 e Bn A 40 77
6 f Ph A 16 80
7 a H B 3 0
8 b Me B 6 88
9 c Et B 2 96
10 d  Alyl B 4 76
11 e Bn B 3 100
12 f Ph B 12 90

@ Reaction conditions, A: 4 (1.8 equiv), 4 A molecular sieves, TFA
(0.05 equiv), CHxCl,, 0 °C to rt; B: 4 (1.8 equiv), 4 A molecular sieves,
LiF (1.25 equiv), CH3CN, sonication, 35 °C. * Yield of product isolated
after chromatography and/or crystallization.
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and spectroscopic data for the product were in full accord
with a novel 1,3-benzodiazepin-5-one ring system, and the
structural assignment was confirmed by single crystal X-ray
crystallographic analysis (Figure 1).*3

Y,
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Figure 1. Single crystal X-ray structure of benzodiazepinone 5a.

The scope of this hovel reaction was explored by subject-
ing N-substituted isatoic anhydride derivatives to the cy-
cloaddition reaction conditions. The derivatives 1b—f, sub-
stituted on nitrogen with akyl, alyl, benzyl, and phenyl
groups, were readily prepared from isatoic anhydride 1a.*4°
Reaction of the isatoic anhydrides 1b—f with the azomethine
ylide 2a resulted in the corresponding N-substituted 1,3-
benzodiazepin-5-ones 5b—f respectively, which were isolated
in 71—92% yield (Table 1, entries 2—6). The higher yields
obtained for the N-substituted derivatives 5b—f, versus the
parent system 5a, was attributed to a combination of cleaner
reactions, as evidenced by NMR analyses of the crude
reaction products, and the greater stability of the N-
substituted products toward chromatographic purification.
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Alternative conditions (amine reagent 4 and LiF with
sonication at 35 °C) have been developed by Padwa'® for
the generation of the azomethine ylide 2a. When the parent
system la was reacted under these conditions, a complex
product mixture resulted, with no evidence of starting
material 1a or 1,3-benzodiazepin-5-one 5a (Table 1, entry
7). In contrast, under these conditions, the N-substituted
isatoic anhydrides 1b—f resulted in high yields of the 1,3-
benzodiazepin-5-ones 5b—f (Table 1, entries 8—12). The lack
of isolation of 5a from the reaction promoted by LiF was
attributed to a higher level of side reactions and/or the
sensitivity of 5a toward degradation under these conditions.

In order to study the effect of varying isatoic anhydride
aromatic substituents on the outcome of this process, a series
of N-methyl benzo-substituted isatoic anhydrides 1g—q was
prepared** and subjected to the LiF-promoted reaction
conditions. For isatoic anhydrides substituted with electron-
withdrawing groups, such as fluoro, chloro, bromo, and
methoxycarbony! groups, the reaction proceeded to comple-
tion and high yields of the 1,3-benzodiazepin-5-one products
were obtained (Table 2, entries 3, 4, 7, 8, and 10). For isatoic

Table 2. Transformation of Benzo-Substituted N-Methy! Isatoic
Anhydrides into 1,3-Benzodiazepin-5-ones®

RY O OMe RY Q
Ris AZ o LiF R3
7 /g + N-Bh —m N—-Bn
ROy N0 [-CO,] R? N~
R Me ™S R'md
1b,g-q 4 5b,g-q
entry 1 R! R? R3 R* time (h) yield (%)°
1 b H H H H 6 88
2 g OMe H H H 3 80
3 h H F H H 24 66
4 i H CO;Me H H 1.5 94
5 j H OMe H H 48 0¢
6 k H H Me H 24 667
7 1 H H Cl H 3 76
8 m H H Br H 2 63
9 n H H OMe H 41 46°
10 o H F F H 6 93
11 p H H H Me 24 o
12 q H OMe OMe H 56 0%

@ Reaction conditions: 4 (1.8 equiv), 4 A molecular sieves, LiF (1.25
equiv), CH4CN, 35 °C, sonication. P Yield of product isolated after
chromatography and/or crystallization. © 73% of starting material 1j was
recovered. 9 13% of starting material 1k was recovered. © 36% of starting
material 1n was recovered. f 79% of starting material 1p was recovered.
977% of starting material 1q was recovered.

anhydrides substituted with electron-donating groups, reac-
tions did proceed when the groups were meta to the carbonyl
group [1g (8-methoxy), 1k (6-methyl), and 1n (6-methoxy);
entries 2, 6, and 9] but were incomplete for the 6-substituted
examples. The high yield of product obtained for the
8-methoxy example 1g demonstrated that a substituent ortho

(16) Padwa, A.; Dent, W. Org. Synth. 1989, 67, 133. Padwa, A.; Dent,
W. Org. Synth. 1993, 231.
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to the isatoic anhydride nitrogen does not hinder the reaction.
For isatoic anhydrides substituted with electron-donating
groups ortho or para to the C4-carbonyl group, no reaction
occurred with starting material being recovered in high yield
[1j (7-methoxy), 1p (5-methyl), and 1qg (6,7-dimethoxy);
entries 5, 11, and 12]. The lack of reactivity in these cases
indicates that ortho or para electron-donating groups can
deactivate the carbonyl group toward reaction with the
azomethine ylide.*” In the case of the 5-methyl derivative
1p, the steric bulk of the methyl group may also hinder the
reaction.

In an effort to observe a reaction intermediate anal ogous
to 3, the reaction of N-methyl isatoic anhydride 1b with
azomethine ylide 2a was followed by *H NMR and IR
spectroscopy. For the NMR study, a solution of 1b and
reagent 4 (in CD,Cl, at 25 °C) was treated with TFA and
spectra were recorded over a 24 h period. It was observed
that signals due to 1b were rapidly replaced by signals due
to atransient oxazolidine intermediate 7, with the conversion
being complete after ca. 20 min (Scheme 2).*8° Particularly

Scheme 2. NMR and IR Spectroscopic Observation of
Oxazolidine Intermediate 7
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diagnostic features of the tH NMR spectrum of intermediate
7 were the geminally coupled doublets at ¢ 4.82 and 4.69
ppm assigned to the nonequivalent oxazolidine methylene
protons H2’a and H2’b. At this time, signals due to the end-
product benzodiazepinone 5b were not apparent. However,
after thistime, the signals due to the oxazolidine intermediate
7 were dowly replaced with those of 5b, with the full
conversion complete after 24 h.

Isatoic anhydride 1b exhibits two strong carbony! stretches
at ve—o 1780 and 1730 cm ™! assigned to the C4 and the C2
carbonyl groups, respectively. The IR spectrum of the
reaction mixture containing the oxazolidine intermediate 7
showed a single new strong carbonyl stretch at ve—o 1725
cmL. After a24 h period, the carbony! stretch at 1725 cm™?
gave way to a carbonyl stretch at vc—o 1654 cm™ due to
the end product 1,3-benzodiazepin-5-one 5b.

(17) Thisresult isin contrast to cycloaddition reactions of azomethine
ylide 2a with benzal dehydes which appear to be unaffected by substitution
with electron-donating groups (see ref 6d).

(18) The 'H NMR spectra of 7 were complicated due to side reactions
of the azomethine ylide 2a and/or precursor 4. The signals due to 7 were
identified by subtraction of the side product signal's observed during a control
experiment performed without isatoic anhydride 1b. Selected data for 7:
Vc—o (CDCl3) 1725 cm™%; *H NMR (500 MHz, CDCl3) 6 7.47 — 7.17 (m,
7H), 7.16 (dd, J = 7.6, 6.8 Hz, 1H, H6), 6.99 (d, J = 8.2 Hz, 1H, H8),
4.82 (d, J = 5.6 Hz, 1H, H2'a), 4.69 (d, J = 5.6 Hz, 1H, H2'b), 4.07 —
3.99 (m, 2H, CH,Ph), 3.53 (s, 2H, N4’), 3.38 (s, 3H, N1Me).

(19) The ingahility of intermediate 7 has so far prevented its purification.
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A plausible mechanism for the transformation of isatoic
anhydride 1b into 1,3-benzodiazepin-5-one 5b is shown in
Scheme 3. A rapid 1,3-dipolar cycloaddition reaction of the

Scheme 3. Plausible Mechanism for the Transformation of
Isatoic Anhydrides into 1,3-Benzodiazepin-5-ones
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azomethine ylide 2a with the benzoyl-like carbonyl group
of the isatoic anhydride 1b results in the spectroscopically
observed oxazolidine intermediate 7. A cascade process then
occurs, initiated by a relatively slow ring opening of
oxazolidine 7 to give the iminium ion 8.%° The akoxide 8
then ring opens to give ketone 9, which then decarboxylates
to provide amide ion 10.2%?2 A 7-endo-trig ring closure®
of the amido-iminium species 10 then affords the isolated
1,3-benzodiazepin-5-one 5b.
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This paper describes the first report of cycloaddition
chemistry of the activated carbonyl group within isatoic
anhydride derivatives. The framework of the 1,3-benzodi-
azepin-5-one products 5 is novel, and analogues are readily
available. The framework of 5 bears a close relationship to
that of benzoazepine and benzodiazepine drugs, e.g. Diaz-
epam, that are known as privileged structures in pharma-
ceutical discovery.®* Further studies will be aimed at
expansion of the scope of the chemistry through exploring
alternative dipoles or activated carboxyl groups and at
application of the 1,3-benzodiazepin-5-one framework in
bioactive discovery.
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